Propositional Logic
not p
| p |
not p |
| True |
False |
| False |
True |
p or q
| p |
q |
p or q |
| True |
True |
True |
| True |
False |
True |
| False |
True |
True |
| False |
False |
False |
p and q
| p |
q |
p and q |
| True |
True |
True |
| True |
False |
False |
| False |
True |
False |
| False |
False |
False |
p → q
| p |
q |
p → q |
| True |
True |
True |
| True |
False |
False |
| False |
True |
True |
| False |
False |
True |
p ↔ q
| p |
q |
p ↔ q |
| True |
True |
True |
| True |
False |
False |
| False |
True |
False |
| False |
False |
True |
Law of Non-Contradiction
p and not p = False
| p |
not p |
p and not p |
| True |
|
|
| False |
|
|
Law of Excluded Middle
Tertium Non Datur
p or not p = True
| p |
not p |
p or not p |
| True |
|
|
| False |
|
|
Law of Double Negation
not not p = p
| p |
not p |
not not p |
| True |
|
|
| False |
|
|
Idempotent Law
p or p = p
Idempotent Law
p and p = p
Identity Law
p or False = p
| p |
False |
False or p |
| True |
False |
|
| False |
False |
|
Identity Law
p and True = p
| p |
True |
p and True |
| True |
True |
|
| False |
True |
|
Dominant Law
p or True = True
| p |
True |
p or True |
| True |
True |
|
| False |
True |
|
Dominant Law
p and False = False
| p |
False |
p and False |
| True |
False |
|
| False |
False |
|
Absorption Law
p and (p or q) = p
| p |
q |
p or q |
p and (p or q) |
| True |
True |
|
|
| True |
False |
|
|
| False |
True |
|
|
| False |
False |
|
|
Absorption Law
p or (p and q) = p
| p |
q |
p and q |
p or (p and q) |
| True |
True |
|
|
| True |
False |
|
|
| False |
True |
|
|
| False |
False |
|
|
Commutative Law
p or q = q or p
| p |
q |
p or q |
q or p |
| True |
True |
|
|
| True |
False |
|
|
| False |
True |
|
|
| False |
False |
|
|
Commutative Law
p and q = q and p
| p |
q |
p and q |
q and p |
| True |
True |
|
|
| True |
False |
|
|
| False |
True |
|
|
| False |
False |
|
|
Associative Law
p or (q or r) = (p or q) or r
| p |
q |
r |
q or r |
p or (q or r) |
p or q |
(p or q) or r |
| True |
True |
True |
|
|
|
|
| True |
True |
False |
|
|
|
|
| True |
False |
True |
|
|
|
|
| True |
False |
False |
|
|
|
|
| False |
True |
True |
|
|
|
|
| False |
True |
False |
|
|
|
|
| False |
False |
True |
|
|
|
|
| False |
False |
False |
|
|
|
|
Associative Law
p and (q and r) = (p and q) and r
| p |
q |
r |
q and r |
p and (q and r) |
p and q |
(p and q) and r |
| True |
True |
True |
|
|
|
|
| True |
True |
False |
|
|
|
|
| True |
False |
True |
|
|
|
|
| True |
False |
False |
|
|
|
|
| False |
True |
True |
|
|
|
|
| False |
True |
False |
|
|
|
|
| False |
False |
True |
|
|
|
|
| False |
False |
False |
|
|
|
|
Distributive Law
p and (q or r) = (p and q) or (p and r)
| p |
q |
r |
q or r |
p and (q or r) |
p and q |
p and r |
(p and q) or (p and r) |
| True |
True |
True |
|
|
|
|
|
| True |
True |
False |
|
|
|
|
|
| True |
False |
True |
|
|
|
|
|
| True |
False |
False |
|
|
|
|
|
| False |
True |
True |
|
|
|
|
|
| False |
True |
False |
|
|
|
|
|
| False |
False |
True |
|
|
|
|
|
| False |
False |
False |
|
|
|
|
|
Distributive Law
p or (q and r) = (p or q) and (p or r)
| p |
q |
r |
q and r |
p or (q and r) |
p or q |
p or r |
(p or q) and (p or r) |
| True |
True |
True |
|
|
|
|
|
| True |
True |
False |
|
|
|
|
|
| True |
False |
True |
|
|
|
|
|
| True |
False |
False |
|
|
|
|
|
| False |
True |
True |
|
|
|
|
|
| False |
True |
False |
|
|
|
|
|
| False |
False |
True |
|
|
|
|
|
| False |
False |
False |
|
|
|
|
|
De Morgan's Law
not(p or q) = not p and not q
| p |
q |
p or q |
not(p or q) |
not p |
not q |
not p and not q |
| True |
True |
|
|
|
|
|
| True |
False |
|
|
|
|
|
| False |
True |
|
|
|
|
|
| False |
False |
|
|
|
|
|
De Morgan's Law
not(p and q) = not p or not q
| p |
q |
p and q |
not(p and q) |
not p |
not q |
not p or not q |
| True |
True |
|
|
|
|
|
| True |
False |
|
|
|
|
|
| False |
True |
|
|
|
|
|
| False |
False |
|
|
|
|
|
Syllogism
[(p → q) and (q → r)] → (p → r) = True
| p |
q |
r |
p → q |
q → r |
p → r |
(p → q) and (q → r) |
[(p → q) and (q → r)] → (p → r) |
| True |
True |
True |
|
|
|
|
|
| True |
True |
False |
|
|
|
|
|
| True |
False |
True |
|
|
|
|
|
| True |
False |
False |
|
|
|
|
|
| False |
True |
True |
|
|
|
|
|
| False |
True |
False |
|
|
|
|
|
| False |
False |
True |
|
|
|
|
|
| False |
False |
False |
|
|
|
|
|
Modus Ponens
[(p → q) and p] → q = True
| p |
q |
p → q |
(p → q) and p |
[(p → q) and p] → q |
| True |
True |
|
|
|
| True |
False |
|
|
|
| False |
True |
|
|
|
| False |
False |
|
|
|
Modus Tollens
[(p → q) and not q] → not p = True
| p |
q |
p → q |
not q |
(p → q) and not q |
not p |
[(p → q) and not q] → not p |
| True |
True |
|
|
|
|
|
| True |
False |
|
|
|
|
|
| False |
True |
|
|
|
|
|
| False |
False |
|
|
|
|
|